Science Mapping Analysis of Density Functional Theory (DFT) for Material Design: A Review

This review explores the applications of density functional theory (DFT) in materials design and how DFT has revolutionized materials discovery for various fields, including drug delivery, energy storage, and spacecraft coatings. The science mapping analysis identifies research trends, and the dominant countries leading the development of new materials for future advancements are reviewed. Fluorescent and localized materials for cancer treatment, thin films for energy storage, catalysts, and materials resistant to spacecraft, efficient energy storage, powerful catalysts, and more reliable spacecraft coatings for future exploration and research are discussed. We found that the strongest research growth was mainly demonstrated by the United States due to its research capabilities, funding, active collaboration, and emphasis on innovation in the design of new materials for various applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic €32.70 /Month

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Rent this article via DeepDyve

Similar content being viewed by others

Computational predictions of energy materials using density functional theory

Article 11 January 2016

The Materials Project: Accelerating Materials Design Through Theory-Driven Data and Tools

Chapter © 2018

The Materials Project: Accelerating Materials Design Through Theory-Driven Data and Tools

Chapter © 2020

Data Availability

All data and materials generated or analyzed during this study are included in this article.

References

  1. P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964). Google Scholar
  2. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965). Google Scholar
  3. K. Hanasaki, Z.A. Ali, M. Choi, M. Del Ben, and B.M. Wong, J. Comput. Chem. 44, 980–987 (2022). Google Scholar
  4. W. Jamshed, M.R. Eid, A.F. Al-Hossainy, Z. Raizah, E.S.M. Tag El Din, and T. Sajid, Sci. Rep. 12, 18130 (2022). Google Scholar
  5. M.D. Ganji, Sh. Mirzaei, and Z. Dalirandeh, Sci. Rep. 7, 4669 (2017). Google Scholar
  6. E. Nemati-Kande, A. Pourasadi, F. Aghababaei, S. Baranipour, A. Mehdizadeh, and J.J. Sardroodi, Sci. Rep. 12, 19972 (2022). Google Scholar
  7. Y. Kang, Z. Mao, Y. Wang, C. Pan, M. Ou, H. Zhang, W. Zeng, and X. Ji, Nat. Commun. 13, 2425 (2022). Google Scholar
  8. B. Geng, J. Hu, Y. Li, S. Feng, D. Pan, L. Feng, and L. Shen, Nat. Commun. 13, 5735 (2022). Google Scholar
  9. S.V. Gupta, V.V. Kulkarni, and Md. Ahmaruzzaman, Sci. Rep. 13, 3009 (2023). Google Scholar
  10. N. Kitchamsetti, M.S. Ramteke, S.R. Rondiya, S.R. Mulani, M.S. Patil, R.W. Cross, N.Y. Dzade, and R.S. Devan, J. Alloys Compd. 855, 157337 (2021). Google Scholar
  11. Z. Gan, J. Yin, X. Xu, Y. Cheng, and T. Yu, ACS Nano 16, 5131 (2022). Google Scholar
  12. Z. Gan, L. Xia, J. Yin, Y. Gao, X. Feng, G. Meng, Y. Cheng, and X. Xu, ACS Appl Energy Mater 5, 15452 (2022). Google Scholar
  13. L. Pernigoni, U. Lafont, and A.M. Grande, CEAS Space Journal 13, 341 (2021). Google Scholar
  14. M.-I. Trappe and R.A. Chisholm, Nat. Commun. 14, 1089 (2023). Google Scholar
  15. L.H. Thomas, Math. Proc. Cambridge Philos. Soc. 23, 542 (1927). Google Scholar
  16. A. Ardiansyah, D. Tahir, H. Heryanto, B. Armynah, H. Salah, A. Sulieman, and D.A. Bradley, Radiat. Phys. Chem. 207, 110835 (2023). Google Scholar
  17. V. Seymour, Front. Public Health 4, 260 (2016). Google Scholar
  18. A. Chaves, J.G. Azadani, H. Alsalman, D.R. da Costa, R. Frisenda, A.J. Chaves, S.H. Song, Y.D. Kim, D. He, J. Zhou, A. Castellanos-Gomez, F.M. Peeters, Z. Liu, C.L. Hinkle, S.-H. Oh, P.D. Ye, S.J. Koester, Y.H. Lee, Ph. Avouris, X. Wang, and T. Low, NPJ 2D Mater. Appl. 4, 29 (2020). Google Scholar
  19. S. Luo, T. Li, X. Wang, M. Faizan, and L. Zhang, WIREs Comput. Mol. Sci. 11, e1543 (2021). Google Scholar
  20. Y. Li and K. Yang, Energy Environ. Sci. 12, 2233 (2019). Google Scholar
  21. Q.M. Dowling, H.E. Volkman, E.E. Gray, S. Ovchinnikov, S. Cambier, A.K. Bera, B. Sankaran, M.R. Johnson, M.J. Bick, A. Kang, D.B. Stetson, and N.P. King, Nat. Struct. Mol. Biol. 30, 72 (2023). Google Scholar
  22. A.H.-W. Yeh, C. Norn, Y. Kipnis, D. Tischer, S.J. Pellock, D. Evans, P. Ma, G.R. Lee, J.Z. Zhang, I. Anishchenko, B. Coventry, L. Cao, J. Dauparas, S. Halabiya, M. DeWitt, L. Carter, K.N. Houk, and D. Baker, Nature 614, 774 (2023). Google Scholar
  23. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch, J. Phys. Condens. Matter 21, 395502 (2009). Google Scholar
  24. W. Yi, G. Tang, X. Chen, B. Yang, and X. Liu, Comput. Phys. Commun. 257, 107535 (2020). MathSciNetGoogle Scholar
  25. S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, and G. Ceder, Comput. Mater. Sci. 68, 314 (2013). Google Scholar
  26. I.G. Ryabinkin, E. Ospadov, and V.N. Staroverov, J. Chem. Phys. 147, 164117 (2017). Google Scholar
  27. B. Kanungo, P.M. Zimmerman, and V. Gavini, Nat. Commun. 10, 4497 (2019). Google Scholar
  28. M.K. Harbola and V. Sahni, J. Chem. Educ. 70, 920 (1993). Google Scholar
  29. P. Singh and M.K. Harbola, Oxford Open Mater. Sci. 1, itab018 (2020). Google Scholar
  30. V.P. Gupta, Principles and Applications of Quantum Chemistry (Academic Press, Boston, 2016), p155. Google Scholar
  31. M. Tayyab, A. Hussain, Q. Ula-Asif, and W. Adil, Comput. Condens Matt. 23, 00469 (2020). Google Scholar
  32. H.-Y. Huang, M. Broughton, J. Cotler, S. Chen, J. Li, M. Mohseni, H. Neven, R. Babbush, R. Kueng, J. Preskill, and J.R. McClean, Science 376, 1182 (2022). MathSciNetGoogle Scholar
  33. M. Soniat, D.M. Rogers, and S.B. Rempe, J. Chem. Theory Comput. 11, 2958 (2015). Google Scholar
  34. P. Borlido, J. Schmidt, A.W. Huran, F. Tran, M.A.L. Marques, and S. Botti, NPJ Comput. Mater. 6, 96 (2020). Google Scholar
  35. M.E. Tuckerman, P.J. Ungar, T. von Rosenvinge, and M.L. Klein, J. Phys. Chem. 100, 12878 (1996). Google Scholar
  36. M. Boero, A. Bouzid, S. Le Roux, B. Ozdamar, and C. Massobrio, Molecular Dynamics Simulations of Disordered Materials (Springer, Switzerland, 2015), p33. Google Scholar
  37. C. Lorenz and N.L. Doltsinis, Handbook of Computational Chemistry (Springer, Netherlands, 2012), p195. Google Scholar
  38. P. Gori-Giorgi, M. Seidl, and G. Vignale, Phys. Rev. Lett. 103, 166402 (2009). Google Scholar
  39. D. Gibney, J.-N. Boyn, and D.A. Mazziotti, J. Phys. Chem. Lett. 13, 1382 (2022). Google Scholar
  40. J. Wang and E.J. Baerends, Phys. Rev. Lett. 128, 013001 (2022). Google Scholar
  41. H.J. Silverstein, A. Huq, M. Lee, E.S. Choi, H. Zhou, and C.R. Wiebe, J. Solid State Chem. 221, 216 (2015). Google Scholar
  42. T. Balcerzak, and K. Szałowski, J. Magn. Magn. Mater. 513, 167157 (2020). Google Scholar
  43. K. Okhotnikov, T. Charpentier, and S. Cadars, J. Cheminform. 8, 17 (2016). Google Scholar
  44. S.Y. Docherty, W.D. Nicholls, M.K. Borg, D.A. Lockerby, and J.M. Reese, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 228, 186 (2014). Google Scholar
  45. P.L. Barclay and D.Z. Zhang, J. Comput. Phys. 435, 110238 (2021). Google Scholar
  46. P. Schwerdtfeger, theoretical Chemistry and Physics of Heavy and Super heavy Elements (Springer, Dordrecht, 2003), p399. Google Scholar
  47. K.F. Garrity, J.W. Bennett, K.M. Rabe, and D. Vanderbilt, Comput. Mater. Sci. 81, 446 (2014). Google Scholar
  48. P. Kraus, J. Chem. Theory Comput. 16, 5712 (2020). Google Scholar
  49. Liang and M. Head-Gordon, J. Phys. Chem. A 108, 3206 (2004). Google Scholar
  50. A. Förster and L. Visscher, J. Comput. Chem. 41, 1660 (2020). Google Scholar
  51. A. D. Becke, in (2014), pp. 175–186.
  52. C.A. Ullrich and Z. Yang, Braz. J. Phys. 44, 154 (2014). Google Scholar
  53. C. Adamo and D. Jacquemin, Chem. Soc. Rev. 42, 845 (2013). Google Scholar
  54. T. Yoshikawa, T. Doi, and H. Nakai, J. Chem. Phys. 152, 244111 (2020). Google Scholar
  55. M. Teplitskiy, E. Duede, M. Menietti, and K.R. Lakhani, Res. Policy 51, 104484 (2022). Google Scholar
  56. E. Fermi, Zeitschrift Fr. Physik 48, 73 (1928). Google Scholar
  57. A.A. Mostofi, J.R. Yates, Y.-S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685 (2008). Google Scholar
  58. D.E. Aspnes, Thin Solid Films 89, 249 (1982). Google Scholar
  59. S. Fu, Compos. Sci. Technol. 56, 1179 (1996). Google Scholar
  60. M. Foygel, R.D. Morris, D. Anez, S. French, and V.L. Sobolev, Phys. Rev. B 71, 104201 (2005). Google Scholar
  61. N. Manikandan, V.P. Suresh Kumar, S. Siva Murugan, G. Rathis, K. Vishnu Saran, and T.K. Shabariganesh, Mater. Today Proc. 47, 4682 (2021). Google Scholar
  62. U.A. Bukar, M.S. Sayeed, S.F.A. Razak, S. Yogarayan, O.A. Amodu, and R.A.R. Mahmood, MethodsX 11, 102339 (2023). Google Scholar
  63. J. Leeming, Nature 556, 139 (2018). Google Scholar
  64. E.R. Tsai, A.N. Tintu, D. Demirtas, R.J. Boucherie, R. de Jonge, and Y.B. de Rijke, Crit. Rev. Clin. Lab. Sci. 56, 458 (2019). Google Scholar
  65. K. Dai, S. Shen, and C. Cheng, Sci. Rep. 12, 3644 (2022). Google Scholar
  66. J.A. Hubbell and R. Langer, Nat. Mater. 12, 963 (2013). Google Scholar
  67. A.M. Ferrari, C. Pisani, F. Cinquini, L. Giordano, and G. Pacchioni, J. Chem. Phys. 127, 174711 (2007). Google Scholar
  68. Y.S. Meng and M.E. Arroyo-de-Dompablo, Energy Environ. Sci. 2, 589 (2009). Google Scholar
  69. P. Sengupta and I. Manna, Trans. Indian Inst. Met. 72, 2043 (2019). Google Scholar
  70. S. Razzaghi, M. Vafaee, B. Kharazian, and M. Nasrollahpour, Sci. Rep. 13, 3323 (2023). Google Scholar
  71. Y. Zhou, X. Jia, D. Pang, S. Jiang, M. Zhu, G. Lu, Y. Tian, C. Wang, D. Chao, and G. Wallace, Nat. Commun. 14, 297 (2023). Google Scholar
  72. S. Fleischmann, J.B. Mitchell, R. Wang, C. Zhan, D. Jiang, V. Presser, and V. Augustyn, Chem. Rev. 120, 6738 (2020). Google Scholar
  73. Z. Zhu, T. Jiang, M. Ali, Y. Meng, Y. Jin, Y. Cui, and W. Chen, Chem. Rev. 122, 16610 (2022). Google Scholar
  74. H. Demiryont and D. Moorehead, Sol. Energy Mater. Sol. Cells 93, 2075 (2009). Google Scholar
  75. K. Bašnec, L.S. Perše, B. Šumiga, M. Huskić, A. Meden, A. Hladnik, B.B. Podgornik, and M.K. Gunde, Sci. Rep. 8, 5511 (2018). Google Scholar
  76. H. Kim, K. Cheung, R.C.Y. Auyeung, D.E. Wilson, K.M. Charipar, A. Piqué, and N.A. Charipar, Sci. Rep. 9, 11329 (2019). Google Scholar

Acknowledgements

We thank all the researchers focusing on the field of material design. Everything you discover makes the world a better place. There is no research funding for this work.

Author information

Authors and Affiliations

  1. Department of Physics, Hasanuddin University, Makassar, 90245, Indonesia Heryanto Heryanto, Ardiansyah Ardiansyah, Roni Rahmat & Dahlang Tahir
  1. Heryanto Heryanto