Enzyme-Mediated Strategies for Effective Management and Valorization of Biomass Waste
The efficient utilization of biomass waste is crucial for sustainable growth and the transition toward a circular bioeconomy. Enzyme-mediated strategies have emerged as promising solutions for the efficient management and valorization of biomass waste. The use of enzymes allows for the breakdown of complex organic molecules, facilitating biomass waste conversion to useful products such as biofuels, bioplastics, and bio-based chemicals. This approach offers several advantages over traditional methods of biomass waste management, including a reduction in emission of greenhouse gases and a decrease in fossil fuels dependence. This chapter provides an overview of the various types of enzymes involved in the conversion of biomass waste, such as cellulases, hemicellulases, ligninases, and lipases. The mechanisms of action and substrate specificities of these enzymes and their importance in the breakdown of complex biomass structures into simpler building blocks were discussed. Various enzyme-mediated management and valorization strategies such as enzymatic hydrolysis, enzymatic pretreatment, and enzymatic conversion of lignocellulosic biomass for the synthesis of biochemicals and biofuels, the enzymatic pretreatment of agricultural residues for the production of bioplastics, and the enzymatic hydrolysis of food waste materials for the synthesis of useful chemicals were also highlighted. Finally, challenges and opportunities associated with the commercialization of enzyme-mediated biomass waste conversion technologies, the cost-effectiveness, scalability, and regulatory issues are highlighted, along with the potential of enzyme engineering and bioprocessing optimization to improve the performance and efficiency of these technologies.
This is a preview of subscription content, log in via an institution to check access.
Access this chapter
Subscribe and save
Springer+ Basic
€32.70 /Month
- Get 10 units per month
- Download Article/Chapter or eBook
- 1 Unit = 1 Article or 1 Chapter
- Cancel anytime
Buy Now
Price includes VAT (France)
eBook EUR 117.69 Price includes VAT (France)
Hardcover Book EUR 147.69 Price includes VAT (France)
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
- Abdel-Shafy, H. I., & Mansour, M. S. M. (2018). Solid waste issue: Sources, composition, disposal, recycling, and valorization. Egyptian Journal of Petroleum. https://doi.org/10.1016/j.ejpe.2018.07.003
- Abraham, A., Mathew, A. K., Park, H., Choi, O., Sindhu, R., Parameswaran, B., Pandey, A., Park, J. H., & Sang, B. I. (2020). Pretreatment strategies for enhanced biogas production from lignocellulosic biomass. Bioresource Technology. https://doi.org/10.1016/j.biortech.2019.122725
- Amalina, F., Razak, A. S. A., Krishnan, S., Sulaiman, H., Zularisam, A. W., & Nasrullah, M. (2022). Biochar production techniques utilizing biomass waste-derived materials and environmental applications – A review. Journal of Hazardous Materials Advances. https://doi.org/10.1016/j.hazadv.2022.100134
- Awogbemi, O., & Von Kallon, D. V. (2022). Valorization of agricultural wastes for biofuel applications. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e11117
- Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M. (2022). Recent strategies for bioremediation of emerging pollutants: A review for a green and sustainable environment. Toxics. https://doi.org/10.3390/toxics10080484
- Bala, S., Garg, D., Sridhar, K., Inbaraj, B. S., Singh, R., Kamma, S., Tripathi, M., & Sharma, M. (2023). Transformation of agro-waste into value-added bioproducts and bioactive compounds: Micro/nano formulations and application in the agri-food-pharma sector. Bioengineering. https://doi.org/10.3390/bioengineering10020152
- Balan, V. (2014). Current challenges in commercially producing biofuels from lignocellulosic biomass. ISRN Biotechnology. https://doi.org/10.1155/2014/463074
- Benti, N. E., Gurmesa, G. S., Argaw, T., Aneseyee, A. B., Gunta, S., Kassahun, G. B., Aga, G. S., & Asfaw, A. A. (2021). The current status, challenges and prospects of using biomass energy in Ethiopia. Biotechnology for Biofuels. https://doi.org/10.1186/s13068-021-02060-3
- Bhardwaj, N., Kumar, B., Agrawal, K., & Verma, P. (2021). Current perspective on production and applications of microbial cellulases: A review. Bioresources and Bioprocessing. https://doi.org/10.1186/s40643-021-00447-6
- Chen, C. C., Dai, L., Ma, L., & Guo, R. T. (2020). Enzymatic degradation of plant biomass and synthetic polymers. Nature Reviews Chemistry.https://doi.org/10.1038/s41570-020-0163-6
- Colussi, F., Michelin, M., Gomes, D. G., Rocha, C. M. R., Romaní, A., Domingues, L., & Teixeira, J. A. (2021). Integrated technologies for extractives recovery, fractionation, and bioethanol production from lignocellulose. Biomass, Biofuels, Biochemicals: Circular Bioeconomy: Technologies for Biofuels and Biochemicals. https://doi.org/10.1016/B978-0-323-89855-3.00001-7
- Estela, R., & Luis, J. (2013). Hydrolysis of biomass mediated by cellulases for the production of sugars. Sustainable Degradation of Lignocellulosic Biomass – Techniques, Applications and Commercialization. https://doi.org/10.5772/53719
- Ewing, T. A., Nouse, N., van Lint, M., van Haveren, J., Hugenholtz, J., & van Es, D. S. (2022). Fermentation for the production of biobased chemicals in a circular economy: A perspective for the period 2022–2050. Green Chemistry. https://doi.org/10.1039/d1gc04758b
- Fülöp, L., & Ecker, J. (2020). An overview of biomass conversion: Exploring new opportunities. PeerJ. https://doi.org/10.7717/peerj.9586
- German, D. P., Chacon, S. S., & Allison, S. D. (2011). Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology. https://doi.org/10.1890/10-2028.1
- Guo, H., Zhao, Y., Chang, J. S., & Lee, D. J. (2023). Enzymes and enzymatic mechanisms in enzymatic degradation of lignocellulosic biomass: A mini-review. Bioresource Technology. https://doi.org/10.1016/j.biortech.2022.128252
- Homaei, A. A., Sariri, R., Vianello, F., & Stevanato, R. (2013). Enzyme immobilization: An update. Journal of Chemical Biology. https://doi.org/10.1007/s12154-013-0102-9
- Houfani, A. A., Anders, N., Spiess, A. C., Baldrian, P., & Benallaoua, S. (2020). Insights from enzymatic degradation of cellulose and hemicellulose to fermentable sugars– A review. Biomass and Bioenergy. https://doi.org/10.1016/j.biombioe.2020.105481
- Jayasekara, S., & Ratnayake, R. (2019). Microbial cellulases: An overview and applications. Cellulose. https://doi.org/10.5772/intechopen.84531
- Jekayinfa, S. O., Orisaleye, J. I., & Pecenka, R. (2020). An assessment of potential resources for biomass energy in Nigeria. Resources. https://doi.org/10.3390/resources9080092
- Kumar, A., & Chandra, R. (2020). Ligninolytic enzymes and its mechanisms for degradation of lignocellulosic waste in environment. Heliyon. https://doi.org/10.1016/j.heliyon.2020.e03170
- Manikandan, S., Vickram, S., Sirohi, R., Subbaiya, R., Krishnan, R. Y., Karmegam, N., Sumathijones, C., Rajagopal, R., Chang, S. W., Ravindran, B., & Awasthi, M. K. (2023). Critical review of biochemical pathways to transformation of waste and biomass into bioenergy. Bioresource Technology. https://doi.org/10.1016/j.biortech.2023.128679
- Mishra, S., Singh, P. K., Dash, S., & Pattnaik, R. (2018). Microbial pretreatment of lignocellulosic biomass for enhanced biomethanation and waste management. 3 Biotech. https://doi.org/10.1007/s13205-018-1480-zBookGoogle Scholar
- Mukherjee, J., & Gupta, M. N. (2015). Biocatalysis for biomass valorization. Sustainable Chemical Processes. https://doi.org/10.1186/s40508-015-0037-2
- Narancic, T., Cerrone, F., Beagan, N., & O’Connor, K. E. (2020). Recent advances in bioplastics: Application and biodegradation. Polymers. https://doi.org/10.3390/POLYM12040920
- Nargotra, P., Sharma, V., Lee, Y. C., Tsai, Y. H., Liu, Y. C., Shieh, C. J., Tsai, M. L., Di Dong, C., & Kuo, C. H. (2023). Microbial lignocellulolytic enzymes for the effective valorization of Lignocellulosic biomass: A review. Catalysts. https://doi.org/10.3390/catal13010083
- Nizami, A. S., Rehan, M., Waqas, M., Naqvi, M., Ouda, O. K. M., Shahzad, K., Miandad, R., Khan, M. Z., Syamsiro, M., Ismail, I. M. I., & Pant, D. (2017). Waste biorefineries: Enabling circular economies in developing countries. Bioresource Technology. https://doi.org/10.1016/j.biortech.2017.05.097
- Ogbu, C. C., & Okechukwu, S. N. (2023). Agro-industrial waste management: The circular and bioeconomic perspective. Agricultural Waste – New Insights [Working Title]. https://doi.org/10.5772/intechopen.109181
- Okafor, C. C., Nzekwe, C. A., Ajaero, C. C., Ibekwe, J. C., & Otunomo, F. A. (2022). Biomass utilization for energy production in Nigeria: A review. Cleaner Energy Systems. https://doi.org/10.1016/j.cles.2022.100043
- Patel, A., & Shah, A. R. (2021). Integrated lignocellulosic biorefinery: Gateway for production of second generation ethanol and value added products. Journal of Bioresources and Bioproducts. https://doi.org/10.1016/j.jobab.2021.02.001
- Ramos, L. P., Suota, M. J., Fockink, D. H., Pavaneli, G., Da Silva, T. A., & Łukasik, R. M. (2020). Enzymes and biomass pretreatment. Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value Added Chemicals Within the Biorefinery Concept. https://doi.org/10.1016/B978-0-12-818223-9.00004-7
- Robinson, P. K. (2015). Enzymes: Principles and biotechnological applications. Essays in Biochemistry. https://doi.org/10.1042/BSE0590001
- Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: Concepts and recent developments. 3 Biotech. https://doi.org/10.1007/s13205-014-0246-5BookGoogle Scholar
- Sakhuja, D., Ghai, H., Rathour, R. K., Kumar, P., Bhatt, A. K., & Bhatia, R. K. (2021). Cost-effective production of biocatalysts using inexpensive plant biomass: A review. 3 Biotech. https://doi.org/10.1007/s13205-021-02847-zBookGoogle Scholar
- Sasmoko, Zaman, K., Malik, M., Awan, U., Handayani, W., Jabor, M. K., & Asif, M. (2022). Environmental effects of bio-waste recycling on industrial circular economy and eco-sustainability. Recycling. https://doi.org/10.3390/recycling7040060
- Sharma, L., Alam, N. M., Roy, S., Satya, P., Kar, G., Ghosh, S., Goswami, T., & Majumdar, B. (2023a). Optimization of alkali pretreatment and enzymatic saccharification of jute (Corchorus olitorius L.) biomass using response surface methodology. Bioresource Technology. https://doi.org/10.1016/j.biortech.2022.128318
- Sharma, S., Tsai, M. L., Sharma, V., Sun, P. P., Nargotra, P., Bajaj, B. K., Chen, C. W., & Dong, C. D. (2023b). Environment friendly pretreatment approaches for the bioconversion of Lignocellulosic biomass into biofuels and value-added products. Environments – MDPI. https://doi.org/10.3390/environments10010006
- Singh, R. K., Tiwari, M. K., Singh, R., & Lee, J. K. (2013). From protein engineering to immobilization: Promising strategies for the upgrade of industrial enzymes. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms14011232
- Singh, R., Langyan, S., Rohtagi, B., Darjee, S., Khandelwal, A., Shrivastava, M., Kothari, R., Mohan, H., Raina, S., Kaur, J., & Singh, A. (2022). Production of biofuels options by contribution of effective and suitable enzymes: Technological developments and challenges. Materials Science for Energy Technologies. https://doi.org/10.1016/j.mset.2022.05.001
- Singhania, R. R., Patel, A. K., Raj, T., Chen, C. W., Ponnusamy, V. K., Tahir, N., Kim, S. H., & Dong, C. D. (2022). Lignin valorisation via enzymes: A sustainable approach. Fuel. https://doi.org/10.1016/j.fuel.2021.122608
- Song, B., Lin, R., Lam, C. H., Wu, H., Tsui, T. H., & Yu, Y. (2021). Recent advances and challenges of inter-disciplinary biomass valorization by integrating hydrothermal and biological techniques. Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2020.110370
- Sweeney, M. D., & Xu, F. (2012). Biomass converting enzymes as industrial biocatalysts for fuels and chemicals: Recent developments. Catalysts. https://doi.org/10.3390/catal2020244
- Wesseler, J., Kleter, G., Meulenbroek, M., & Purnhagen, K. P. (2023). EU regulation of genetically modified microorganisms in light of new policy developments: Possible implications for EU bioeconomy investments. Applied Economic Perspectives and Policy. https://doi.org/10.1002/aepp.13259
- Wiltschi, B., Cernava, T., Dennig, A., Galindo Casas, M., Geier, M., Gruber, S., Haberbauer, M., Heidinger, P., Herrero Acero, E., Kratzer, R., Luley-Goedl, C., Müller, C. A., Pitzer, J., Ribitsch, D., Sauer, M., Schmölzer, K., Schnitzhofer, W., Sensen, C. W., Soh, J., et al. (2020). Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnology Advances. https://doi.org/10.1016/j.biotechadv.2020.107520
- Yaashikaa, P. R., Devi, M. K., & Kumar, P. S. (2022). Advances in the application of immobilized enzyme for the remediation of hazardous pollutant: A review. Chemosphere. https://doi.org/10.1016/j.chemosphere.2022.134390
- Yafetto, L., Odamtten, G. T., & Wiafe-Kwagyan, M. (2023). Valorization of agro-industrial wastes into animal feed through microbial fermentation: A review of the global and Ghanaian case. Heliyon. https://doi.org/10.1016/j.heliyon.2023.e14814
- Yang, B., Dai, Z., Ding, S. Y., & Wyman, C. E. (2011). Enzymatic hydrolysis of cellulosic biomass. Biofuels. https://doi.org/10.4155/bfs.11.116
- Zamora Zamora, H. D., de Freitas, C., Bueno, D., Shimizu, F. L., Contiero, J., & Brienzo, M. (2020). Biomass Fractionation Based on Enzymatic Hydrolysis for Biorefinery Systems. https://doi.org/10.1007/978-981-15-9593-6_9
- Zhao, B., Al Rasheed, H., Ali, I., & Hu, S. (2021). Efficient enzymatic saccharification of alkaline and ionic liquid-pretreated bamboo by highly active extremozymes produced by the co-culture of two halophilic fungi. Bioresource Technology. https://doi.org/10.1016/j.biortech.2020.124115
- Zhou, C., & Wang, Y. (2020). Recent progress in the conversion of biomass wastes into functional materials for value-added applications. Science and Technology of Advanced Materials. https://doi.org/10.1080/14686996.2020.1848213
- Zhu, B., Wang, D., & Wei, N. (2022). Enzyme discovery and engineering for sustainable plastic recycling. Trends in Biotechnology. https://doi.org/10.1016/j.tibtech.2021.02.008
Author information
Authors and Affiliations
- Department of Biology, Umaru Musa Yar’adua University, Katsina, Nigeria Usman Lawal Usman
- Department of Environmental Sciences, Sharda University, Greater Noida, India Usman Lawal Usman & Sushmita Banerjee
- Department of Chemistry, Faculty of Basic Sciences, Rajiv Gandhi University (A Central University), Doimukh, Arunachal Pradesh, India Bharat Kumar Allam
- Usman Lawal Usman